A note on the quicksort asymptotics

نویسنده

  • Michael Fuchs
چکیده

In a recent paper, Bindjeme and Fill obtained a surprisingly easy exact formula for the L2-distance of the (normalized) number of comparisons of Quicksort under the uniform model to its limit. Shortly afterwards, Neininger proved a central limit theorem for the error. As a consequence, he obtained the asymptotics of the L3-distance. In this short note, we use the moment transfer approach to re-prove Neininger’s result. As a consequence, we obtain the asymptotics of the Lp-distance for all p ≥ 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refined quicksort asymptotics

The complexity of the Quicksort algorithm is usually measured by the number of key comparisons used during its execution. When operating on a list of n data, permuted uniformly at random, the appropriately normalized complexity Yn is known to converge almost surely to a non-degenerate random limit Y. This assumes a natural embedding of all Yn on one probability space, e.g., via random binary se...

متن کامل

On the tails of the limiting Quicksort distribution

We give asymptotics for the left and right tails of the limiting Quicksort distribution. The results agree with, but are less precise than, earlier non-rigorous results by Knessl and Spankowski.

متن کامل

Quicksort Algorithm Again Revisited

We consider the standard Quicksort algorithm that sorts n distinct keys with all possible n! orderings of keys being equally likely. Equivalently, we analyze the total path length n in a randomly built binary search tree. Obtaining the limiting distribution of n is still an outstanding open problem. In this paper, we establish an integral equation for the probability density of the number of co...

متن کامل

M ay 2 00 1 Quicksort Asymptotics

The number of comparisons X n used by Quicksort to sort an array of n distinct numbers has mean µ n of order n log n and standard deviation of order n. Using different methods, Régnier and Rösler each showed that the normalized variate Y n := (X n −µ n)/n converges in distribution, say to Y ; the distribution of Y can be characterized as the unique fixed point with zero mean of a certain distri...

متن کامل

A note on multipivot Quicksort

We analyse a generalisation of the Quicksort algorithm, where k uniformly at random chosen pivots are used for partitioning an array of n distinct keys. Specifically, the expected cost of this scheme is obtained, under the assumption of linearity of the cost needed for the partition process. The integration constants of the expected cost are computed using Vandermonde matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2015